سنجش‌ از دور کاربردی در ArcMAP

No English Name Available
میانگین امتیاز کاربران : 0 / از 5
  • ارسال با پیک و یا پست
  • قیمت : 45,000تومان
توضیحات کوتاه

سنجش‌ از دور کاربردی در ArcMAP

با توجه به رشد فزاينده ي علم و فن آوري در دنيا، به نظر مي رسد نقش پژوهش در زمینه سنجش از دور (RS) روز به روز برجسته تر مي شود. كشور ما هم چند سالي است كه امر پژوهش  در سنجش از دور را جدي گرفته است و دولت و مسئولان به تشويق بيشتر پژوهشگران پرداخته اند. در اين ميان، يكي از دغدغه هاي اساسي پژوهشگران، اساتيد و دانشجويان انجام پروژه های سنجش از دور در محیط های سیستم اطلاعات جغرافیایی می باشد. در چند سال تدريسي كه در زمینه نرم افزار های سنجش از دور  داشته ایم همواره شاهد کاربرانی بوده ایم كه نمی توانستند با نرم افزار Arc MAP به پردازش تصاویر ماهواره ایی بپردازند.به این دلیل در کتاب حاضر قصد داریم که به آموزش  سنجش از دور کاربردی در محیط نرم افزاری ArcMAP از سری نرم افزار های تولیدی شرکت ESRI بپردازیم. اين مجموعه علاوه بر تعاریف و کلیات در زمینه سنجش از دور  به معرفي پروژه های کاربردی در این زمینه می پردازد و به نمونه های پروژه های انجام شده در ایران و جهان اشاره می کند.

توضیحات

 

ارتفاع پرواز(Flight altitude) : فاصله قائم بین مرکز دوربین یا مرکزتصویر تا سطح زمین یا سطح مبنا را ارتفاع پرواز گویند.

اطلاعات مکانی (Spatial information):اطلاعاتی که توسط تغییرات مکانی پاسخ طیفی یک منظره حمل می شود.

انرژی تابشی(Radiant energy): انرژی حمل شده توسط تابش الکترومغناطیس. به آن انرژی تابش نیز می گویند.

آنالوگ (Analogue):صورتی از ثبت داده ها که بر اساس اصل اندازه گیری پیوسته به جای شمارش گسسته عمل می کند. به آن مانسته نیز می گویند.

بارزسازی لبه(Edge enhancement):استفاده از تکنیکها یا فنون تحلیلی برای تاکید کردن بر تحول فضائی تن تصویر.

بازتاب(Reflection):تابش الکترومغناطیسی که نه جذب می شود و نه تراگسیل.

بازتابندگی(Reflectance):نسبت انرژی تابشی از یک جسم به انرژی تابشی فرودی بر آن. گاهی به اشتباه جای تابندگی به کار می رود.

بسط تباین(Contrast stretching):افزایش دادن تباین تصاویر با بسط دادن گستره اولیه مقادیر یا تنها به منظور استفاده از کل گستره تباین فیلم ثبت کننده یا وسیله نمایش.

بیضوی مرجع(Datum): بیضوی دورانی که به بهترین وجه , شکل زمین و مرکز آن ، دوران زمین و میدان ثقل آن را توصیف می کند و بر اساس آن سیستم مختصات تعریف می شود تا  نقاط روی سطح زمین در آن سیستم مختصات تعیین موقعیت گردند.( مانند بیضویهای WGS84  وHayford ) برای تعیین موقعیت مسطحاتی ازبیضوی مبنا بعنوان سطح مبنای مسطحاتی استفاده می شود.

پردازش تصاویر (image processing) : به مجموعه عملیاتهای انجام شده بر روی تصاویر که باعث افزایش کیفیت داده ها و پیش درآمدی برای تفسیر بهتر داده ها باشد پردازش تصاویر گویند. با انجام پردازش رقومی می توان بطور اتوماتیک و بدون استفاده از عامل انسانی (روش دستی) عوارض را شناسایی کرده و اطلاعات لازم را استخراج نمود.

پردازش داده ها(Data processing):بکارگیری روشهای مکانیکی، الکتریکی و یا محاسباتی برای تبدیل داده ها از صورتی به صورت دیگر که به آن داده پردازی می گویند.

پیش پردازش(preprocessing)  : معمولاً داده­های سنجش از دور که توسط سیستم­های سنجش از دور دریافت می­شوند، تحت تأثیر دو خطای مهم شامل خطای رادیومتریک و هندسی قرار می­گیرند. خطای رادیومتریک خطایی است که محتوای اطلاعاتی ثبت شده توسط سیستم­های سنجش از دور را تحت تأثیر قرار داده و موجب می­گردد، مقدار عددی هر پیکسل (DN) با مقدار بازتاب واقعی پدیده متناظر مغایرت داشته باشد. خطای هندسی، وضعیت هندسی تصویر، شامل شکل واندازه را دستخوش تغییر می­نماید. این خطا موجب می­گردد، ابعاد و شکل پیکسل تصویر با اندازه و شکل واقعی پدیده در روی زمین مغایرت داشته باشد.علاوه­بر این تصویر خام اخذ شده توسط ماهواره در سیستم مختصات پیکسلی بوده که می­بایست به سیستم مختصات جهانی وصل گردد.حذف و تصحیح خطاهای هندسی و رادیومتریک را از روی داده­های سنجش از دور تحت عنوان پیش­پردازش یا Preprocessing عنوان می­کنند. تصویری که بر روی آن پیش­پردازش انجام شده است، تا حد ممکن از جهت رادیومتریک و هندسی به واقعیت نزدیک می­باشد.

پیکسل(pixel) : کوچکترین المان یا جزء یک تصویر رقومی که اطلاعات توصیفی در مورد آن موجود است.

پیچش مکعبی(Cubic convolution):تکنیک نمونه برداری مجدد که برای تصحیح هندسی تصویرها به کار می رود.

پیشینه(history): خلاصه‌ای از مراحل انجام و نحوه تهیه اطلاعات مکانی.

تابش الکترومغناطیسی (Electromagnetic radiation):انرژی انتشار یافته از طریق فضا یا محیطهای مادی به صورت برهم کنشس پیشرونده بین میدانهای الکتریکی و مغناطیسی.

تاریخ آخرین تغییرات (Date of Last changes): تاریخ آخرین بازنگری مجموعه داده‌ها (تاریخ هجری شمسی).

تابیدگی (Irradiance):اندازه از تابش الکترومغناطیسی فرودی بر یک سطح در واحد توان. پرتو افکنی نیز گفته می شود.

تاریخ تهیه(Date of Provided): تاریخ تهیه مجموعه داده‌ها (تاریخ هجری شمسی).

تاریخ عکسبرداری (Date of photography):  تاریخی که عکسبرداری از منطقه صورت گرفته است (تاریخ هجری شمسی).

تباین(Contrast):اختلاف در مقدار یا تن بین سایه و روشنیها در یک تصویر   .

تحلیل مولفه های اصلی(Principal components analysis):صورتی آماری از متراکم نمودن داده ها.

ترکیب رنگی (Color composite):تصویری رنگی که با نسبت دادن یک رنگ به هر یک از تصویرهای متعدد یک منظره و بر هم نهی اپتیکی یا رقومی نتیجه، تولید می شود.

تصاویر آشکارسازی تغییر(Change image detection):تصاویری که از مقایسه نوری یا رقومی دو تصویر که در زمانهای مختلف بدست آمده اند، تهیه می شوند.

تصویر (Image): نمایشی از یک شئ به وسیله چیز دیگر. معمولا به نمایشی از یک پدیده با وسیله ای اپتیکی، الکترو اپتیکی، اپتیکی مکانیکی یا الکترونیکی اطلاق می شود.

تمام رنگ  (Panchromatic):فیلمهایی که نسبت به کا ناحیه مرئی طیف الکترومغناطیس حساس هستند.

جذب (Absorption):فرایندی که طی آن انرژی تابشی جذب شده و به صورتهای دیگر انرژی تبدیل می شود.

داده (data) : نوعی از اطلاعات که قابل تفسیر و تشریح بوده و به نحو مناسبی برای نقل و انتقال , تفسیر یا پردازش دسته بندی شده باشد.

داده های رقومی(Digital data):داده هایی که در نماد دودویی نمایش داده شده، ثبت و یا ذخیره می گردند.

رادار(Radar):نام اختصاری برای آشکار سازی رادیویی و تعیین گستره که از عبارت انگلیسی آن Radio detection & Ranging گرفته شده است. روش، سیستم یا تکنیکی برای استفاده از باریکه تابش الکترومغناطیس بازتابی و زمانبندی شده در محدوده طول موجهای میکرو موج برای آشکار سازی و تعیین ابعاد اشیاء و تهیه تصویر آنها.

روشنایی(Brightness):استنباطی بصری که بر طبق آن چنین نمودار می شود که سطحی نور را کم یا زیاد از خود گسیل می کند.

ساختار داده(Data structure) : ساختار داده ها مکانی را به طور کلی می توان به دودسته ی داده های رستری (سلولی) وداده های وکتوری (برداری)  تقسیم بندی کرد:۱- داده های رستری(Raster data):  این نوع داده ها دارای ساختارسلولی هستند. به کوچکترین جزء این داده ها یک سلول یا پیکسل گفته می شود. قرارگرفتن مجمو عه ای از این سلول ها درکنارهم موجب شکل گیری ونمایش یکسری اطلاعات به صورت یک لایه رستری می گردد . هرسلول مشخصه هایی داردیکی ازاین مشخصات مربوط به شماره سطروستون آن پیکسل نسبت به مبدا مختصات فرضی می باشد این مبدا درنرم افزارهای مختلف متفاوت است ومی تواند دریکی ازچهارگوشه مجموعه پیکسلها واقع شده باشد.داده های رستری رامی توان به صورت یک ماتریسی درنظرگرفت که هرپیکسل آن یک کد ازسطرویک کد ازستون را به خود اختصاص می دهد. هرپیکسل داده رستری دارای یک کد می باشد که نشان دهنده ی ارزش آن پیکسل (نمایشگر نوع عارضه یا ویژگی موجود در آن موقعیت) است که به آن عدد رقومی ) (DN ,Digital Number گفته می شود.  تصاویرماهواره ای ، مدل رقومی ارتفاعی زمین (DEM) ، نقشه های اسکن شده و… مثال هایی ازداده های رستری می باشند. داده های رستری به صورت فرمت های بسیارمتنوعی وجود دارند که  در اینجا به چند نمونه از آنها اشاره می شود : grid, img ,tiff, geotif, bmp, jpeg , pix , و … ۲- داده های وکتوری(Vector data): در این ساختار اشیاء یا عوارض در جهان واقعی بوسیله عناصر هندسی نمایش داده می‌شوند. بدین معنا که موقعیت هر شی به وسیله مختصات آن و توسط نقاط (چاه)، خطوط (جاده) و سطوح (دریاچه) مشخص می شود. در این مدل، موقعیت هر نقطه به طور دقیق با یک جفت مختصات در یک سیستم مختصات معین ارائه می شود. داده های  وکتوری دارای فرمتهای مختلفی است که در اینجا به چند نمونه از آنها اشاره می شود:  Coverage , Shape , DWG , DGN  DXF,

سطح مبنای ارتفاعی(Altitude level): سطح مبنای ارتفاعات ارتومتریک کشور، سطح متوسط آبهای آزاد است و  ایستگاه ” بندر عباس” بعنوان مبنای ارتفاعات ایران انتخاب شده است. لازم به ذکر است ارتفاعات ارتومتریک منسوب به ژئویید با ارتفاعات ارتومتریک منسوب به سطح متوسط دریاها حداکثر یک متر اختلاف دارند.

سنجش از دور (دورکاوی) (Remote sensing): علم  و هنر کسب اطلاعات درباره جسم ، منطقه  یا پدیده از طریق تجزیه و تحلیل داده های اخذ شده توسط ابزار بخصوص بدون تماس با جسم ، منطقه یا  پدیده  مورد نظر را دورکاوی گویند. تهیه نقشه های مورد نیاز از روی تصاویر ماهواره ای در حیطه کاری سنجش از دور قرار می گیرد.

سنجنده(Sensor):هر وسیله ای که تابش الکترومغناطیسی را دریافت، آن را به یک سیگنال تبدیل کرده و به صورتی مناسب برای حصول اطلاعات مربوط به زیست محیط نمایش دهد.

سیستم تصویر (projection system) : روشی که با آن سطح دارای انحنای زمین ( بیضوی یا کره)  بر روی یک صفحه تصویر می شود را سیستم تصویر گویند.این روش عمدتاً نیازمند تبدیل ریاضی سیستماتیک خطوط  شبکه نصف النهارات و مدارات بر روی صفحه است.(مانند سیستم تصویر TM,UTM,Lambert)

سیستم غیر فعال(Passive system):سیستم سنجش که تابش بازتابیده یا گسیل شده از سطح زمین را آشکارسازی می کند.

سیستم فعال (Active system):سیستم سنجش از دوری که تابش الکترومغناطیسی را خود گسیل می کند. مانند رادار

شکست(Refraction):خمش یا انحراف مسیر پرتوهای تابش الکترومغناطیسی هنگام عبور از یک محیط به یک محیط دیگر که ضریب شکست یا ضریب دی الکتریک متفاوتی نسبت به هم دارند که به آن انکسار گفته می شود.

شماره رقومی (Digital number):عدد صحیحی که به هر نقطه بر روی تصویر گسسته سنجش از دور نسبت داده می شود.

شماره قاچ(zone number) : شماره زون سیستم تصویر

صحت (Accuracy): 1- میزان موفقیت در برآورد ارزش حقیقی ۲- میزان نزدیکی برآورد یک مشخصه به ارزش حقیقی مشخصه در جمعیت

طبقه بندی نظارت شده(Supervised classification):فرایندی کامپیوتری که از طریق آن هر جزء تصویری بر طبق قاعده تصمیم خاصی به یک رده نسبت داده می شود.

طبقه بندی(Classification):فرایند اختصاص دادن ناحیه های تصویر (یعنی جزءهای تصویری یا پیکسلها) به رده ها، که عموما بر اساس مشخصه های بازتابندگی یا پس پراکندگی انجام می گیرد.

طول موج  (Wavelength):طول یک موج از تابش الکترومغناطیسی.

طول موجهای مرئی (Visible wavelengths):گستره تابشی که چشم انسان نسبت به آن حساس بوده و تقریبا بین طول موجهای ۴/۰ تا ۷/۰ میکرو متر واقع است.

طیف الکترومغناطیسی Electromagnetic spectrum) ):آرایه منظم تابش الکترومغناطیسی که از موجهای کیهانی کوتاه تا موجهای رادیویی بلند گستردگی دارد.

عکس (photo): تصویر مرکزی نقاط سطح زمین بر روی یک صفحه مسطح را عکس گویند.

عنوان نقشه یا اطلاعات مکانی (Map title or spatial information): نام اصلی نقشه یا اطلاعات مکانی موجود و در دست تهیه.

عوارض زیر زمینی(Underground feature):  عوارضی مانند خطوط انتقال آب و فاضلاب، برق، گاز، مخابرات، نفت و… که در زیر سطح زمین قرار دارند.

عوارض سطحی(Surface feature):  عوارضی مانند بلوک آماری، پارسل، بلوک ساختمانی، خطوط انتقال برق و مخابرات، کانال‌های آب روزمینی و هوایی و کلیه عوارضی از این نوع که در سطح زمین یا بالای سطح زمین قرار دارند.

فاصله کانونی(Focal length): فاصله مرکز تصویر تا سطح فیلم را فاصله کانونی گویند .

فتوگرامتری(Photogrammetry) : علم تهیه اطلاعات قابل اعتماد عوارض از طریق ثبت ،اندازه گیری و تفسیر بر روی عکس و یا سایر مدارکی که با استفاده از انرژی الکترومغناطیسی تابشی ثبت شده باشند.  این روش که بعضاً با عنوان نقشه برداری هوایی شناخته می شود ؛ بعنوان یکی از روشهای تهیه نقشه های مورد نیاز با استفاده از عکسهای هوایی مورد استفاده قرار می گیرد.

فرکانس(Frequency):تعداد طول موجهایی که در واحد زمان از یک نقطه عبور می کنند.

فروسرخ(Infrared):بخشی از طیف الکترومغناطیس که بین انتهای سرخ طیف مرئی و تابش میکرو موج قرار دارد. در سنجش از دور، طول موجهای فروسرخ غالبا به طول موجهای فروسرخ نزدیک (۷/۰ تا ۳/۱ میکرو متر)، فروسرخ میانی (۳/۱ تا ۳ میکرومتر) و فرو سرخ گرمایی( ۳تا ۱۴ میکرو متر) تقسیم می شوند که به آن مادون قرمز گفته می شود.

فیلتر بالا گذر(High pass Filter):یک فیلتر مکانی که فراوانیها یا فرکانسهای مکانی بالا را بارزتر می کند و در نتیجه وضوح تصویر بیشتر می شود که به آن صافی بالا گذرنیز می گویند.

فیلتر پائین گذر(Low pass filter):فیلتر مکانی که فراوانیها یا فرکانسهای مکانی کم را بارزتر می کند و در نتیجه تصویر همواری به دست می دهد.

فیلتر کردن(Filtering):1- حذف کردن بعضی فرکانسها یا فراوانیهای طیفی یا فضایی به منظور بارزسازی عوارض در بقیه تصویر ۲- حذف کردن طول موجی معین از باریکه ای از تابش الکترومغناطیس.

فیلتر مکانی(Spatial filter):نوعی فیلتر که برای بارزسازی بعضی مشخصه ای مکانی یا فضایی یک تصویر به کار می رود که به آن صافی مکانی نیز می گویند.

فیلتر(Filter):هر ماده که با جذب یا بارتاب، بطور انتخابی تابش عبور از یک سیستم اپتیکی را تغییر می دهد به آن صافی گفته می شود.

فیلم رنگ واقعی (True color film):اصطلاحی برای متمایز ساختن فیلم رنگی معمولی از فیلم فروسرخ نزدیک کاذب رنگ، که دلالت برآن دارد که رنگهای ثبت شده بر روی فیلم در واقع همان رنگهای اولیه منظره مورد نظر هستند. به جای این اصطلاح معمولا ترجیح داده می شود که از اصطلاح فیلم رنگی استفاده شود.

قدرت تفکیک رادیومتریک(Radiometric resolution) : ﻣﻌﺮﻑ ﺗﻮﺍﻧﺎﺋﻲ ﺳﻨﺠﻨﺪﻩ ﺩﺭ ﺗﺸﺨﻴﺺ ﻭ ﺛﺒﺖ‫ﺷﺪﺕ ﺍﻧﺮﮊﻱ ﺩﺭﻳﺎﻓﺘﻲ ﺍﺳﺖ. ﺍﻳﻦ ﺗﻮﺍﻧﺎﺋﻲ ﻣﻌﻤﻮﻻ” ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻴﺰﺍﻥ ﺣﺎﻓﻈﻪ ﺍﺧﺘﺼﺎﺹ ﻳﺎﻓﺘﻪ ﺑﻪ ﻫﺮ ﭘﻴﻜﺴﻞ‫ﺗﺼﻮﻳﺮ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩو درنهایت تعداد سطوح خاکستری که توسط سنجنده قابل تشکیل شدن است را با واحد بیت نشان می دهد.

تفکیک زمانی(Temporal resolution) : حداقل زمان مورد نیاز برای دوبار اخذ متوالی داده توسط سنجنده از یک منطقه مشخص.

قدرت تفکیک طیفی(Spectral resolution):  ﻗﺪﺭﺕ ﺗﻔﻜﻴﻚ ﻃﻴﻔﻲ ﺑﻪ ﺗﻌﺪﺍﺩ ﺑﺎﻧﺪﻫﺎ ﻭ ﻋﺮﺽ ﻫﺮ ﻳﻚ ﺍﺯ ﺁﻧﻬﺎ ﺑﺮﺍﻱ ﻳﻚ ‫ﺳﻨﺠﻨﺪﻩ ﺍﺷﺎﺭﻩ ﻣﻲﻛﻨﺪ (توانایی سنجنده در ثبت محدوده های مختلف طول موج است).

قدرت تفکیک(رزولوشن) هندسی(Geometric resolution): کوچکترین مساحت قابل اندازه گیری توسط سنجنده که همان اندازه پیکسل تصویر اخذ شده است. با این مشخصه، میزان جزییات عوارض قابل تشخیص زمینی تعیین می شود.

کاذب رنگ(False color):استفاده از یک رنگ غیر معمول برای نمایش دادن رنگی یک عارضه. به آن فالس کالر نیز می گویند.

کاربری زمین(Land use):استفاده از زمین. به آن کاربری اراضی نیز گفته شده که اغلب با پوشش زمینی اشتباه می شود.

لبه (Edge):مرز یا محدوده یک شی در تصویر

ماهواره(Satellite):شئ در حال گردش دور یک جرم آسمانی که به آن مر مصنوعی نیز گفته می شود.

متادیتا(meta data): هر پروژه تهیه نقشه ( اطلاعات مکانی) شامل اطلاعاتی درباره داده‌های آن پروژه نظیر تاریخ شروع و خاتمه پروژه، نحوه تهیه اطلاعات مکانی، سیستم تصویر، مقیاس و … می‌باشد که به این اطلاعات متادیتا یا فراداده گویند.

محدوده جغرافیایی منطقه(Geographical area of the region): حداقل و حداکثر طول و عرض جغرافیایی ( مختصات در سیستم تصویر مورد نظر) در برگیرنده منطقه.

مختصات جغرافیایی(Geographical coordinates) : در تعیین موقعیت مسطحاتی , موقعیت مسطحاتی عوارض روی سطح زمین نسبت به بیضوی مبنا تعیین میشوند.مختصات مسطحاتی نقاط بر روی بیضوی مرجع، به مختصات جغرافیایی(Φ,λ) معروف است. عرض جغرافیایی (Φ) یک نقطه برابر با زاویه شعاع آن نقطه در راستای قائم (شاغولی)با سطح استوا بوده و طول جغرافیایی(λ) یک نقطه برابر با زاویه نصف النهار آن نقطه از نصف النهار مرجع گرینویچ می باشد.

مقیاس خاکستری(Grey scale) :نواری تکفام یا مونوکرومیک از سایه ها که از سفید تا سیاه با سایه های حد میانی خاکستری گستردگی دارد.

مقیاس(Scale): نسبتی را که بین ابعاد روی نقشه و اندازه متناظرشان بر روی زمین وجود دارد؛ مقیاس می گویند.( نسبت کوچک شدکی عوارض بر روی نقشه)

موزائیک(Mosaic):اجتماعی از تصاویر های همپوشانی کننده که لبه ای آنها به منظور ایجاد نمایش پیوسته ای از بخش سطح زمین با یکدیگر جفت شده اند.

میکروموج (Microwave):بخشی از طیف الکترومغناطیس که بین انتهای گرمایی طیف فروسرخ و موجهای رادیویی قرار دارد.

نام منطقه جغرافیایی(Name of geographic region): نام منطقه‌ای که مجموعه داده‌ها به آن تعلق دارد.

نقشه (map): تصویر قائم عوارض سطح زمین است بر روی صفحه ای افقی که پدیده های سطح زمین بطور یکسان در آن کوچک شده باشد.

نقشه برداری (زمینی) (Surveying (Ground):  عبارتست از یک مجموعه اندازه گیریهای طولی و زاویه ای (با استفاده از تجهیزاتی نظیر Total Station ,   GPSو …) و انجام محاسبات بر روی این اندازه گیریها و سرانجام ترسیم نتایج حاصله بر صفحه تصویر

نقشه برداری(Mapping): رشته ایست از ریاضیات عملی که هدف از آن تعیین شکل مسطحاتی و/یا ارتفاعی عوارض زمین و یا قطعاتی از آنست.

نمودار ستونی(Histogram): نمایش ترسیمی یا گرافیکی مجموعه ای از داده های که فراوانی وقوع (روی محور قائم) مقدارهای منفرد (روی محور افقی) را نشان می دهد، به هیستوگرام معروف است.

نمونه برداری دوباره (Resampling ):تصحیح هندسی به وسیله بازسازی تصویر بر یایه ای جدید، که معمولا یک نقشه است.

نمونه های تمرینی (Training samples):نمونه داده هایی که از یک موجودیت معلوم که برای تعیین مرزهای تصمیم به عنوان بخشی از طبقه بندی نظارت شده مورد استفاده قرار می گیرد.

نوع نقشه(اطلاعات مکانی) (((( Type of map (spatial information: نوع کاربری نقشه یا اطلاعات مکانی را بیان می‌نماید. مانند: توپوگرافی، کاداستر، آماری، پروفیل مسیر و …

وقتی که تمام اشعه های تصویر از نقطه ای ثابت بگذرند و بر صفحه تصویر ثبت شوند ، تصویر مرکزی ایجاد می شود. این نقطه ثابت را مرکز تصویر گویند. در فتوگرامتری هوائی از تصویر مرکزی استفاده می شود.

هدر فایل (Header file یا فایل اطلاعات تصویر ماهواره ای) :  فایل جانبی تصاویر ماهواره ای  که اطلاعاتی  نظیر تعداد سطرها ،ستون تصویر،اطلاعات هندسی تصویر نظیر سیستم تصویر،اندازه پیکسل،نام باند هاوتوصیف تصویرو…را در بر دارد.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل اول

سنجش از دور

 

۱-۱ سنجش از دور[۱]

 

اینک که شما در حال خواندن این عبارات هستید، در واقع از روش سنجش ‌از دور استفاده می‌کنید. چشمان شما به ‌عنوان سنجنده‌هایی عمل می‌کند که نسبت به بازتاب نور از این صفحه واکنش نشان می‌دهند. این اطلاعات توسط کامپیوتر مغزتان تحلیل و تفسیر شده و شما می‌توانید با جمع‌بندی حروف سازنده عبارات توضیحاتی را در مورد خطوط تیره این صفحه بیان کنید. علاوه بر این می‌توانید تشخیص دهید که این کلمات جملاتی را تشکیل می‌دهند و شما به تفسیر اطلاعاتی که توسط این جملات انتقال داده می‌شوند می‌پردازید.

در اغلب متون علمی پاسخ سؤالاتی از قبیل: علّت استفاده، مزایا و ویژگی‌های داده‌های سنجش ‌از دور را به‌ سادگی می‌توان یافت. اما  این سؤال که آیا سنجش ‌از دور علم، هنر و یا فناوری است، مطرح می‌شود. چراکه روش‌های مرتبط با تحقیق در هرکدام از این سه دیدگاه کاملاً متفاوت‌اند. در بسیاری از منابع ترجیح داده می‌شود که سنجش‌ازدور را با صورت” علم و هنر به دست آوردن و تفسیر اطلاعات در مورد اشیاء، نواحی و یا پدیده‌ها از طریق تجزیه ‌و تحلیل “تعریف نمایند(جنسن ، ۲۰۰۶).

با این حال سنجش‌ازدور ترکیبی کامل از علم، فناوری و هنر است. لیلسند و همکاران( ٢٠٠٧ ) سنجش‌ازدور را ” علم،فناوری و هنر به دست آوردن اطلاعات در مورد اشیاء، سطح، یا پدیده‌ها به‌وسیله تحلیل داده‌های اخذ شده از وسایلی که در تماس مستقیم با شیء، سطح و پدیده تحت بررسی نباشد” تعریف می‌کنند. سنجش‌ از دور دانش پردازش و تفسیر تصاویری است که حاصل ثبت تعامل انرژی الکترومغناطیس و اشیاء می‌باشند (سابینز، ۱۹۹۷). سنجش‌ازدور بر سنجیدن اشیاء از مسافتی خاص، یعنی تشخیص و اندازه‌گیری ویژگی‌های یک جسم بدون تماس بالفعل با آن جسم، دلالت دارد(هارپر  و همکاران، ۱۹۸۳).

در بسیاری موارد سنجش‌ازدور را می‌توان به‌عنوان بخشی از فرایند خواندن به‌حساب آورد که در آن اطلاعاتی با استفاده از سنجنده­های متنوع جمع‌آوری ‌شده و برای کسب اطلاعات درباره پدیده، سطح و یا شیء مورد نظر مورد بررسی قرار می‌گیرند(لیلسند وکیفر،۲۰۰۷ ). طبقه‌بندی سیستم‌های سنجش از دور به‌طور خلاصه در شکل ۱-۱ به‌طورکلی نمایش داده‌ شده است.

شکل ۱-۱ نمای کلی سیستم‌های سنجش‌ازدور از آغاز تاکنون

 

۱-۲ مراحل رشد تاریخی سنجش از دور

 

در تاریخ سنجش از دور، در سال ۱۸۵۹ اولین عکس هوایی توسط گاسپارد فلیکس از یک بالون هوایی تهیه شد. در سال ۱۹۰۳ از کبوترهای جاسوس در مأموریت‌های نظامی استفاده شد. در سال ۱۹۰۸ ویلبررایت اولین هواپیمای عکاس را رهبری نمود و بونویلان عکس‌های هوایی را تهیه کرد.

در سال‌های آخر جنگ جهانی اول عکس‌های هوایی به‌سرعت برای اهداف شناسایی بکار گرفته شدند. اما جنگ جهانی دوم دوره جدیدی برای عکس‌برداری‌های هوایی به همراه داشت. بطوریکه پیشرفت‌های مهمی در صنعت عکس‌برداری حاصل شد و استفاده از فیلم‌های حساس مادون‌قرمز رایج گردید.

در دهه ۱۹۶۰ آمریکا از طریق ماهواره‌های جاسوسی خود شروع به جمع‌آوری اطلاعات علیه کوبا و شوروی سابق نمود. در سال ۱۹۷۲ ناسا اولین ماهواره ارزیابی منابع زمینی بنام ERTS-1 را به فضا پرتاب کرد که بعدها تحت نام LANDSAT شناخته شد.

در سال ۱۹۷۲ اولین سری ماهواره‌های لندست با دوربین و سنجنده‌های RBV (Return Beam Vidicon)،  MSS (Multi spectral sensor و (TM (Thematic Mapper در چهار و هفت باند توسط ایالات‌متحده آمریکا در مدار زمین قرارگرفته، از این مرحله که تصویربرداری از حالت آنالوگ خارج و به‌صورت رقومی درآمد، دریچه‌ای جدید برای پردازش تصاویر و نهایتاً تعبیر و تفسیر آن‌ها به روی بشر گشوده شد.

فرانسه در سال ۱۹۸۶ اولین سری ماهواره‌های SPOT خود را باقدرت تفکیک ۱۰ و ۲۰ متر (در سه باند) در مدار کره زمین قرارداد.

هندوستان سری ماهواره‌های (IRS (Indian Remote Sensing را در سال ۱۹۸۸ تکمیل نمود.

در این میان کشور ژاپن و آژانس فضایی اروپا در سال ۱۹۹۱ به ترتیب اقدام به ساخت سری ماهواره­های (ERS(European RS Satellites), MOS (Marine Observatio Satellites  نموده و ماهواره‌های مشاهده زمین خود را در مدار کره زمین قرار دادند.

در سال ۱۹۹۱ با ظهور سنجنده های راداری، کشور کانادا سری ماهواره‌های RadarSat را تکمیل و به فضا پرتاب نمود.

در سال ۱۹۹۵، با مشارکت کشورهای برزیل و چین، ماهواره CBERS (China-Brazil Earth Resource Satellite) به فضا پرتاب شد.

با پرتاب ماهواره IKONOS (با توان تفکیک مکانی ۰.۸ متر و ۲.۳ متر) در سال ۱۹۹۹ و ماهواره QuickBird (با توان تفکیک مکانی ۰.۶ متر و ۲.۴۴ متر) در سال ۲۰۰۱، قدم بزرگی در جهت تولید و به‌کارگیری تصاویر ماهواره‌ای با توان تفکیک مکانی بالا برداشته شد.

در سال ۲۰۰۳ با ساخت و پرتاب ماهواره پیشرفته OrbView (توان تفکیک مکانی ۱ متر و ۴ متر) قدم جدیدی در عرصه تصویربرداری ماهواره‌ای برداشته شد.

سازمان فضایی هند (ISRO)، در حال تحقیق درباره پروژه ماهواره‌هایی است که دارای قابلیت ارسال به فضا و بازگشت مجدد به زمین هستند. این پروژه در حال سپری کردن سیر تکاملی خود در ISRO است و انتظار می‌رود در سال ۲۰۰۵ بهره‌برداری شود.

در سال ۲۰۰۸ ماهواره GeoEye (با توان تفکیک مکانی ۰.۴ متر و ۱.۶ متر) در مدار زمین قرار گرفت. تاکنون این ماهواره جزو مدرن‌ترین ماهواره‌های سنجش‌ازدور با توان تفکیک مکانی بسیار بالا محسوب می‌گردد که کاربردهای فراوانی در علم سنجش‌ازدور و مشاهدات زمین دارد.

 

۱-۳ طیف الکترومغناطیس

 

طیف الکترومغناطیس، شامل طول‌موج‌های کوتاه از اشعه‌های گاما  و X تا طول‌موج‌های بلندتر شامل امواج ماکروویو و امواج رادیویی است. با شناخت دقیق محدوده‌های طیف الکترومغناطیس فرایندهای پردازش و تفسیر تصاویر امکان‌پذیر می‌شود. در شکل زیر طیف الکترومغناطیس نمایش داده‌شده است.

شکل ۱-۲ طیف الکترومغناطیس

 

در سنجش‌ازدور، طبقه‌بندی امواج الکترومغناطیسی بر اساس موقعیت طول‌موج آن‌ها در طیف الکترومغناطیس انجام می‌گیرد. متداول‌ترین واحدی که برای اندازه‌گیری طول‌موج در طیف الکترومغناطیس مورداستفاده قرار می‌گیرد، میکرومتر است. یک میکرومتر معادل یک میلیونیم متر است. همچنین باید توجه داشت که بخش‌های طیف الکترومغناطیسی به‌کار رفته در سنجش‌ازدور در امتداد یک طیف پیوسته قرار می‌گیرند که مقدار آن‌ها نسبت به یکدیگر تا حد توان ده (به‌طور پی‌درپی) تفاوت دارد.

فناوری سنجش‌ازدور باعث از محدوده وسیعی در طیف الکترومغناطیسی شامل امواجی با طول‌موج بسیار کوتاه(اشعه گاما) تا بسیار بلند(امواج رادیویی) می‌شود.

محدوده طول‌موج طیف الکترومغناطیس دارای محدوده‌ای با اسامی متفاوت از اشعه گاما، اشعه X، اشعه فرابنفش، نور مرئی، اشعه مادون‌قرمز تا امواج رادیویی‌(به ترتیب از طول‌موج‌های کوتاه‌تر به بلندتر) است. بخش مرئی چنین نموداری بی‌نهایت کوچک است، زیرا حساسیت طیفی چشم انسان بین ۴/۰ میکرومتر تا ۷/۰ میکرومتر است. بطوریکه رنگ آبی تقریباً بین طول‌موج ۴/۰ میکرومتر تا ۵/۰ میکرومتر، رنگ سبز تقریباً بین طول‌موج ۵/۰ میکرومتر تا ۶/۰ میکرومتر و رنگ قرمز تقریباً بین طول‌موج ۶/۰ میکرومتر تا ۷/۰ میکرومتر است.

محدوده طیف الکترومغناطیس قابل دید توسط چشم انسان(سیگنال‌ها از طریق گیرنده‌های چشم به مغز برده می‌شود و تفاوت بین آن‌ها، حس تشخیص رنگ‌ها را به انسان می‌دهد).

انرژی ماوراءبنفش به انتهای نور آبی بخش طیف مرئی متصل است. در انتهای نور قرمز محدوده ‌طیف مرئی، سه نوع امواج مادون‌قرمز وجود دارد که عبارت هستند از:

۱) مادون‌قرمز نزدیک: از ۷/۰ میکرومتر تا ۳/۱ میکرومتر

۲) مادون‌قرمز میانی: از ۳/۱ میکرومتر تا ۳ میکرومتر

۳) مادون‌قرمز حرارتی: بیش از ۳ میکرومتر.

در طول‌موج‌های بیشتر (۱ میلی‌متر تا ۱ متر)، بخش امواج کوتاه(ماکروویو) طیف وجود دارد.

اکثر سیستم‌های سنجش متداول در یک یا چندین بخش از قسمت‌های مرئی، مادون‌قرمز یا ماکروویو طیف الکترومغناطیس فعالیت می‌کنند. به‌عبارت‌دیگر هر یک از سیستم‌های سنجنده(Sensor) به نواحی خاصی از طیف الکترومغناطیس حساس بوده و قسمتی از خصوصیات طیفی اجسام را ثبت می‌کنند.

به‌عنوان‌مثال دستگاه‌های عکسبرداری معمولی نسبت به انرژی نور مرئی و نزدیک به آن یعنی طول‌موج‌های ۳/۰ تا ۲/۱ میکرون حساسیت دارند؛ سنجنده های اسکن‌کننده مادون‌قرمز حرارتی عموماً ‌به طول موجهای بین ۱ تا ۲ میکرون و دستگاههای رادار به باندهایی با طول موجهای خیلی بلندتر(میلی متر و متر) حساس هستند.

ارتباط بین طول موج با انرژی و فرکانس: طول موج کوتاهتر، انرژی و فرکانس بیشتر و بالعکس.

ارتباط بین طول موج با انرژی وفرکانس: بیشترین انرژی و فرکانس و امواج با طول موج کوتاه درمحدوده مرئی قرار دارد.

 

۱-۴ اجزاء مدل سنجش از دور

 

بطور خلاصه، لازمه عملیات دورسنجی، برخورد انرژی ساطع شده از یک منبع انرژی با شیء و یا پدیده‌ها و سپس ثبت و تجزیه و تحلیل واکنش‌های مشاهده شده به منظور شناخت شیء و یا پدیده مذکور است. برای اینکه سنجش از دور امکان‌پذیر شود، توالی فرآیندهای هفت‌گانه ضروری است. در ادامه به هر یک از این عوامل اشاره شده است:

۱-۴-۱ منبع انرژی یا روشنایی

منبع انرژی در سنجش از دور به عنوان نیاز اولیه و اساسی به شمار می‌رود تا نور، یا به عبارت بهتر، انرژی الکترومغناطیس بر روی اهداف مورد نظر بتابد. در طبیعت مهمترین منبع تولید انرژی الکترومغناطیس خورشید است. محدوده تشعشعات ساطعه از خورشید از طول موج‌های بسیار کوتاه تا بسیار بلند در نوسان است.

 

۱-۴-۲ تشعشع و اتمسفر

انرژی الکترومغناطیس هنگام انتقال از منبع اصلی به سوی اهداف مورد نظر در مسیر عبور، ضمن برخورد با ذرات اتمسفری تحت تاثیر قرار می‌گیرد. این برخورد ممکن است هنگام بازتابش یا انتشار انری از اهداف به فضا صورت گیرد. در عبور تشعشعات از خورشید به کره زمین، واکنش‌های ویژه‌ای صورت می‌گیرد که ممکن است چیستی انرژی عبور کننده را تا حد قابل ملاحظه‌ای تغییر دهد.

 

۱-۴-۳ برخورد انرژی با اشیاء

انرزی بعد از عبور از اتمسفر، با اشیای زمین برخورد می‌کند، در این صورت با توجه به چیستی طیف انرژی الکترومغناطیس و ویژگی‌های فیزیکی و شیمیایی مواد، فرآیندهای انعکاس و تشعشع مجدد صورت می‌گیرد. فعل و انفعالات انری و ماده در نتیجه برخورد امواج با پدیده‌های مختلف، شامل انعکاس، جذب و عبور انرژی برخورد کننده خواهد بود.

 

۱-۴-۴ دریافت و ثبت انرژی به‌وسیله سنجنده‌ها

بعد از انتشار انرزی از منبع اصلی یا از طریق انعکاس انرزی از سوی اشیای زمینی به فضا، برای جمع‌آوری ثبت تشعشعات الکترومغناطیس سنجنده‌ها به کار گرفته می‌شوند. دریافت و ثبت امواج از انعکاس یا تشعشع مجدد از پدیده‌ها توسط سنجنده‌های مختلف انجام می‌گیرد.

 

۱-۴-۵ انتقال، سنجش و پردازش داده‌ها

انرژی دریافتی توسط سنجنده‌ها اغلب به‌صورت داده‌های الکترونیکی به ایستگاه‌های زمینی ارسال می‌شود. در این ایستگاه‌ها، اطلاعات در مراحل اولیه، پردازش شده، به انواع مختلف تبدیل و نگهداری می‌شوند. در کل، فرآیند اطلاعات گرفته شده و تبدیل آن به اطلاعات قابل استفاده از لوازم یک مدل سنجش از دور است.

 

۱-۴-۶ تجزیه و تحلیل و تفسیر اطلاعات

در این مرحله، داده‌های رقومی تجزیه و تحلیل می‌گردند و برای توصیف اصولی و تفسیر منطقی آنالیز می‌شوند تا اطلاعات تازه‌ای در مورد اهدافی که در معرض انری قرار می‌گیرند، به دست می‌آید.

 

۱-۴-۷ کاربردها

نتیجه نهایی پردازش تصویر و تفسیرهای اعمال شده بر روی داده‌ها به فهم هر چه بهتر چیستی پدیده‌ها و ارائه خدمات خاص منجر می‌گردد. در کل، حل یک مشکل ویژه به مفهوم کاربرد تعبیر می‌گردد. فرآیندهای موثر در مقوله سنجش از دور به ترتیب در فصل‌های بعدی با طرح جزئیات بیشتری مورد بحث قرار می‌گیرد.

 

۱-۵ انواع سنجنده‌ها و سنجش از دور

 

جمع‌آوری امواج الکترومغناطیس جهت اندازه‌گیری و ثبت، از وظایف سنجنده‌ها محسوب می‌شوند. سنجندها در دنیای سنجش از دور از دیدگاه‌های مختلف دسته‌بندی می‌شوند. شناخت این‌که هر سنجنده در کدام دسته قرار می‌گیرد، می‌تواند به پیش‌بینی بسیاری از خصوصیات هندسی و یا طیفی آن‌ها کمک کند. سنجنده ها از لحاظ منبع انرژی، نوع و روش جمع‌آوری داده‌ها و از لحاظ هندسه تصویربرداری تقسیم‌بندی می‌شوند.

سنجنده ها از لحاظ منبع انرژی به دو دسته سنجنده های فعال (Active) و سنجنده های غیر فعال(Passive) تقسیم می گردند. سنجنده های غیر فعال، به منبع نور خورشید و سایر پارامترهای مرتبط با آن وابستگی شدید دارند.در مقابل سنجنده‌های فعال قرار داشته که از لحاظ تامین انرژی الکترومغناطیس و سایر عوامل جوی و اتمسفری کاملا مستقل عمل می‌نمایند. بعنوان مثال، سنجنده‌های راداری از این نوع هستند.

سنجنده­ها به گونه­ای طراحی شده­اند که اطلاعات لازم در ارتباط با سیگنال­های رسیده را فراهم آورد. سیگنال­ تابعی از مواد و پدیده­هایی است که در سطح زمین وجود داشته و از ترکیب مولکولی و شکل منحصر بفردی برخوردار است. تابش الکترومغناطیس، بازتاب، جذب و همچنین گسیل می‌شود که این امر تابعی از ویژگی­های پدیده­های مختلف است. سنجنده­های سنجش از دور می‌توانند دیدهای مختلفی از سطح زمین ایجاد نمایند. این تفاوت از طریق توان­های تفکیک مکانی، طیفی، رادیومتریکی، زمانی، زاویه دید، قطبش، طول‌موج، پدیده‌ها و اثرات اتمسفر حاصل می‌شود(Christine Pohl, 2017).

مزیت استفاده از سنجنده­های فضابرد سنجش از دور قابلیت اخذ داده از فضای وسیع است که می‌تواند دید سینوپتیک از سیاره زمین را ایجاد نماید. با استفاده از سنجش از دور فضابرد امکان آشکارسازی تغییرات در بازه­های زمانی مختلف در مکان­های گوناگون فراهم می‌شود. سنجش از دور از بعد سنجنده­ها به دسته­های مختلفی طبقه­بندی می‌شود. سنجش از دور فعال و سنجش از دور غیر فعال.

سنجش از دور غیرفعال بر اساس سنجنده­هایی ایجاد شده که ازخورشید به عنوان منبع انرژی استفاده می‌کنند. بر همین اساس این دسته از سنجنده­ها در محدوده بازتابی و حرارتی طیف الکترومغناطیس می‌توانند تصویربرداری نمایند. به عبارت دیگر سنجش از دور اپتیکال، سنجش از دور مادون قرمز بازتابی، سنجش از دور مادون قرمز حرارتی و سنجش از دور مایکروویو غیرفعال بواسطه سنجنده­های غیرفعال ایجاد شده­اند. با این حال سنجش از دور فعال بر اساس سنجنده­هایی ایجاد شده که خود دارای منبع انرژی هستند و بر همین اساس سنجش از دور لایدار و سنجش از دور مایکروویو فعال ایجاد شده است. سنجنده­های غیرفعال امواج بازتابی و گسیل شده را شناسایی و دریافت می‌نمایند. سنجنده­های فعال تنها می‌توانند امواج بازتابی را ثبت نمایند. امواج الکترومغناطیسی مورد استفاده در سنجش از دور به این صورت دسته­بندی می‌شوند:

سنجش از دور اپتیک: بصورت کلی سنجش از دور اپتیک شامل بازتاب محدوده مرئی و مادون قرمز نزدیک است. محدوده مرئی به سه قسمت طول موج آبی، سبز و قرمز در بازه ۴۰۰ تا ۷۰۰ نانومتر دسته­بندی می‌شود. محدوده مادون قرمز نزدیک بازه بین ۷۰۰ تا ۱۱۰۰ نانومتر را پوشش می‌دهد.

سنجش از دور مادون قرمز: به صورت کلی به دو دسته تقسیم­بندی می‌شود. سنجش از دور بازتابی و سنجش از دور حرارتی. سنجش از دور بازتابی بازه بین ۷۰۰ تا ۳۰۰۰ نانومتر را شامل می‌شود که خود شامل سه بخش مجزا است. مادون قرمز نزدیک (۷۰۰ تا ۱۱۰۰ نانومتر)، مادون قرمز میانی (۱۱۰۰ تا ۱۵۰۰ نانومتر) و سنجش از دور طول موج کوتاه (۱۵۰۰ تا ۳۰۰۰ نانومتر). مادون قرمز حرارتی نیز به دو دسته تقسیم می‌شود: مادون قرمز حرارتی طول موج کوتاه (۳۰۰۰ تا ۵۰۰۰ نانومتر) و سنجش از دور حرارتی طول موج بلند (۸۰۰۰ تا ۱۴۰۰۰ نانومتر).

سنجش از دور مایکروویو: شامل امواج ۱میلی­متر تا ۱ متر را شامل می‌شود.

شکل ۱– ۳

 

۱-۵-۱ سنجش از دور اپتیکی

همانطور که پیش تر به آن اشاره شد محدوده مرئی و مادون قرمز نزدیک به عنوان امواج الکترومغناطیسی مورد استفاده برای سنجش از دور اپتیکی است.  یکی از مهم ترین مزیت های این بخش از طیف، بیشینه بودن تابش انرژی خورشیدی در طول موج های کوتاه است. تمامی انرژی های بازتاب، گسیل شده از سطح زمین در این محدوده توسط سنجنده های الکترونیکی جذب شده و به سیگنال های الکترونیکی تبدیل می‌شود. اصول سنجش از دور اپتیکی را می‌توان در شکل ۱-۴ مشاهده نمود. سپس سیگنال های ثبت شده توسط سنجنده برای پردازش های بیشتر به ایستگاههای زمینی انتقال داده می‌شود.

شکل ۱-۴

 

در سنجش از دور اپتیکی می‌توان با استفاده از امواج الکترومغناطیسی بازتاب شده از پدیده های مختلف سطح زمین به رفتار طیفی آنها پی برد. با استفاده از رفتار طیفی پدیده ها می‌توان نسبت به ویژگی های پدیده ها از نظر شیمیایی و فیزیکی پی برد و تغییرات مربوط به آن را آشکارسازی نمود. با این حال رفتارهای طیفی پدیده های مختلف به عنوان یک پارامتر پویا در نظر گرفته می‌شود که نسبت به تغییرات فصلی، محیطی و آب وهوایی بسیار حساس است.

باند¬های مورد استفاده در سنجش از دور اپتیکی از توان تفکیک مکانی بالایی می‌توانند برخوردار باشند و دلیل این امر نیز بیشینه بودن تابش خورشیدی در محدوده مرئی و مادون قرمز نزدیک است. بر همین اساس میزان اطلاعات و جزییات مکانی در باندهای اپتیکی نسبت به سایر باندها بیشتر است.

یکی از مهم ترین محدودیت هایی که در سنجش از دور اپتیکال و باندهای آن وجود دارد عدم نفوذ از پوشش های ابری است. وجود پوشش ابر در مناطق تصویربردار توسط سنجنده مانع از استخراج اطلاعات کافی و مفید در ارتباط با پدیده های مختلف می‌گردد. بر همین اساس در طراحی ماهواره ها همواره سعی می‌شود که در فرایند تصویربرداری کمتر با شرایط ابری مواجه شود.

در عرض های بالا در فصل زمستان روشنایی در روز به اندازه کافی وجود ندارد و این عامل باعث کاهش کیفیت اطلاعات باند های اپتیکال است که نور خورشید به عنوان منبع اصلی تامین انرژی آنها محسوب می‌شود. این در حالی است که در سنجنده های فعال بدلیل اینکه خود دارای منبع انرژی هستند اخذ اطلاعات در هر ساعتی از شبانه روز و در هر شرایط آب و هوایی با مشکل مواجه نمی‌شود.

 

۲-۵-۱  سنجش از دور راداری

 

اصول سنجش از دور راداری با سنجش از دور اپتیکی کاملا متفاوت است. مهم­ترین تفاوت بین آن دو در نوع منبع انرژی و طول موج­های مورد استفاده در آنها است. در سنجش از دور راداری معمولا از سنجنده­های فعال استفاده می‌شود که خود دارای منبع انرژی هستند. و برهمین اساس در هر شرایط زمانی از شبانه­روز و در هر فصلی می‌توانند نسبت به تصویربرداری از پدیده­های مختلف سطح زمین اقدام نمایند. در سنجش از دور راداری امواج مایکروویو توسط سنجنده تولید و به سمت هدف ارسال شده و سپس بازپراکنش آن توسط سنجنده دریافت و تبدیل به سیگنال الکترونیکی شده و سپس به ایستگاه زمینی منتقل می‌شود(شکل۱-۵).

شکل ۱-۵

 

تصویربرداری در محدوده مایکروویو می‌تواند بصورت فعال و غیر فعال صورت بگیرد. زمین بصورت طبیعی امواج مایکروویو گسیل می‌نماید اما میزان این گسیل­ شدگی بسیار بسیار اندک بوده و بر همین اساس تصاویر مایکروویو غیرفعال بدست آمده از توان تفکیک مکانی بسیار پایینی برخودار هستند و می‌توان از آنها یرای مطالعات قاره­ای استفاده نمود. در مایکروویو فعال نیز انرژی به اندازه کافی بصورت مصنوعی تولید شده و داده­ها از توان تفکیک مکانی بسیار بالاتری در مقایسه با داده­های مایکروویو غیرفعال برخوردار هستند. با این حال در سنجنده­های فعال که از نوع رادار می­باشند، توان تفکیک مکانی تابعی از طول آنتن دریافت کننده انرژی است. هرچه طول آنتن بیشتر باشد سنجنده از توان تفکیک مکانی بالاتری نیز برخودار است. همین امر ایجاد کننده نوعی محدودیت در پردازش داده­های راداری و همچنین طراحی سنسور­های آن گردیده است. برای حل این مشکل سیستم­های راداری دریچه مصنوعی ارائه شد که از آن با عنوان سیستم SAR یاد می‌شود. در این سیستم­های نوین برای حل مشکل طول آنتن از آنتن­های مجازی استفاده شده است که امکان طراحی سنجنده­های راداری با توان تفکیک مکانی بالاتر را به گونه مطلوبی فراهم آورده است.

طول موج بکار برده شده در سنجش از دور راداری، مایکروویو است. این دسته از امواج در میان تمامی امواج الکترومغناطیسی بکاربرده شده در سنجش از دور از بیشترین طول موج برخوردار هستند و بر همین اساس از قابلیت نفوذپذیری بیشتری برخوردار هستند و امکان تصویربرداری در محدوده­های ابری و غباری را در شرایط جوی مختلف به همراه می­آورد.از سوی دیگر امواج مایکروویو اطلاعات با ارزشی را در ارتباط با ویژگی­های فیزیکی پدیده­های مختلف از جمله توپوگرافی، ناهمواری، زبری، شکل، جهت و همچنین رطوبت پدیده­ها می‌تواند در اختیار کاربران قرار دهد. همانطور که پیش­تر نیز اشاره شد در محدوده اپتیک ویژگی­های جذب و بازتاب امواج برای شناسایی و ارزیابی پدیده­ها مورد استفاده قرار می‌گیرد با این حال در محدوده مایکروویو طول موج، میزان بازپراکنش، قطبش، زاویه دید و زاویه برخورد امواج، نوع سطح از جمله موارد موثر در استخراج اطلاعات در نظر گرفته می‌شوند. طول موج­ و فرکانس­های مورد استفاده در سنجش از دور رادار و لایدار را می‌توان در شکل ۱-۶ ملاحظه کرد.

شکل ۱-۶

 

تصاویر بدست آمده از سنجنده­های راداری بصورت سیاه و سفید است. آن دسته از مناطقی که سطح هموار و بدون پستی­ و بلندی داشته باشند به صورت تیره مشاهده می‌شوند چرا که میزان بازپراکنش  امواج راداری در آنها چندان زیاد نیست. در عین حال هرچقدر بر زبری و ناهمواری در سطح زمین افزوده شود میزان بازپراکنش به شکل قابل توجهی افزایش پیدا می‌نماید و در تصویر به رنگ روشن­تر ظاهر می‌شود(شکل ۱-۷).

شکل ۱-۷ 

 

 

۳-۵-۱ سنجش از دور ابرطیفی

 

سنجش از دور ابرطیفی در ارتباط با سنجنده­هایی بکاربرده می‌شود که از توان تفکیک طیفی بسیار بالایی برخوردار باشند. توان تفکیک طیفی در سنجش از دور تابعی از تعداد باند­ و پهنای باند است. هرچه تعداد باند بیشتر و پهنای آن کمتر باشد، توان تفکیک طیفی نیز بالاتر است. سنجنده­های ابرطیفی معمولا بیش از ۱۰۰ باند با پهنای کمتر از ۱۰ نانومتر را دارا هستند. در مقابل سنجش از دور ابرطیفی سنجش از دور چندطیفی قرار دارد که در آن تعداد باند­ها کمتر و پهنای باندها نیز بیشتر است. تفاوت بین سنجنده چندطیفی و ابرطیفی را می‌توان در شکل ۱-۸ مشاهده نمود.

شکل ۱-۸

 

مهم­ترین مزیت سنجنده­های ابرطیفی در این است که امکان مطالعه طیفی پدیده­های مختلف را با دقت بسیار بالاتری فراهم می­آورد. اما در عین حال مهم­ترین محدودیت ایجاد شده توسط این سنجنده­ها در افزونگی داده­ها است. میزان افزونگی در داده­های این سنجنده­ها بسیار زیاد بوده و میزان همبستگی بین باندی را افزایش داده است. به همین منظور داده­های ابرطیفی به منظور استخراج اطلاعات از آنها باید تحت روش­های پردازشی خاصی در این زمینه قرار بگیرند. عموم الگوریتم­های بکاربرده شده در این زمینه به ۴ دسته کلی تقسیم­بندی می‌شود:

  • آشکارسازی آنومالی­ها
  • آشکار سازی تغییرات
  • طبقه­بندی
  • اختلاط زدایی طیفی

بالا بودن تعداد باند­ها در تصاویر داده­های ابرطیفی باعث افزایش پیچیدگی­ در فرایند پردازش داده­های ابرطیفی می‌شود. در همین راستا به منظور کاهش ابعاد داده­ها در پردازش تصاویر ابرطیفی از دو روش عموما استفاده می‌شود:

  • روش انتخاب باند
  • روش استخراج ویژگی

 

۱-۵-۴  سنجش از دور حرارتی

همانطور که پیش­تر بیان شد محدوده مادون قرمز به دو بخش مادون قرمزبازتابی و مادون قرمز حرارتی دسته­بندی و طبقه­بندی می‌شود. مادون قرمز بازتابی شامل امواج مادون قرمزی است که از پدیده­های مختلف بازتاب و توسط سنجنده ثبت شده است. امواج مادون قرمز حرارتی نیز شامل آن دسته از امواج مادون قرمزی است که از پدیده­های مختلف سطح زمین پس از جذب، گسیل شده است. محدوده مادون قرمز حرارتی از ۳ تا ۳۵ میکرومتر را در طیف به خود اختصاص داده است. با این حال محدوده ۳ تا ۵ و ۸ تا ۱۴ میکرومتر در دورسنجی سیاره زمین مورد استفاده قرار می‌گیرد. محدوده ۳ تا ۵ میکرومتر اثر تابش خورشید در آن بیشتر بوده و در نتیجه تفسیر تصاویر این محدوده طیفی در مقایسه با سایر محدوده­ها از پیچیدگی­هایی برخوردار است. از این محدوده برای مطالعات آتش­سوزی­ها و همچنین آتش­فشان­ها استفاده می‌شود بدلیل اینکه از طول موج کوتاهتر و فرکانس بالاتری در مقایسه با سایر امواج حرارتی برخوردار است. محدوده ۸ تا ۱۴ میکرومتر نیز به دلیل اینکه در بازه بیشترین تابش حرارتی زمین قرار دارد برای مطالعات زمین گرمایی و همچنین حرارت سطح زمین بسیار مناسب و کاربردی است(شکل۱-۹).

پس از اینکه تابش خورشید به سطح زمین می‌رسد بخشی از آن توسط پدیده­ها جذب شده و جنبش مولکولی و بدنیال آن درجه حرارت پدیده­ها افزایش می­یابد، سپس انرژی حرارتی از پدیده­ها در قالب طول موج بلند منتشر شده و توسط سنجنده حرارتی دریافت می‌گردد.

شکل ۱-۹ 

 

در سنجش از دور حرارتی فرض بر این است که هر پدیده­ای که از درجه حرارت بیش از ۰ کلوین (۲۷۳.۱۵- درجه سلسیوس) برخوردار است دارای جنبش مولکولی بوده و بواسطه این جنبش از خود انرژی ساطع می‌کند. داده­های حرارتی بدست آمده از سنجنده­ها به عنوان یک داده مکمل برای داده­های مایکروویو و اپتیکال در سنجش از دور محسوب می‌شود.

میزان انرژی حرارتی گسیل شده از پدیده­های مختلف تابعی از گسیلمندی و حرارت جنبشی پدیده­ها است. گسیلمندی اشاره میزان تابش یک پدیده در مقایسه با جسم سیاه را شامل می‌شود. جسم سیاه به عنوان یک جسم فرضی است که تمامی انرژی الکترومغناطیسی رسیده به آن جذب شده و سپس تمامی انرژی جذب شده گسیل می‌شود(میزان گسیلمندی برابر با ۱). مقدار گسیلمندی بین ۰ تا ۱ متغییر است. هرچه گسیلمندی بیشتر باشد اصطلاحا مقدار آن به یک نزدیکتر خواهد شد.

[۱] – Remote Sensing

نقد و بررسی‌ها

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین کسی باشید که دیدگاهی می نویسد “سنجش‌ از دور کاربردی در ArcMAP”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

امتیازات کاربران

میانگین امتیازات کاربران به ویژگی های محصول
0 امتیاز 5 ستاره
0 امتیاز 4 ستاره
0 امتیاز 3 ستاره
0 امتیاز 2 ستاره
0 امتیاز 1 ستاره

پرسش و پاسخ

برای ارسال پرسش یا پاسخ باید در سایت وارد شوید. ورود به حساب کاربری
لطفا متن پرسش/پاسخ خود را وارد کنید

اطلاعات فروشنده

  • فروشنده: admingk
  • هنوز امتیازی دریافت نکرده است.